Защита электромагнитов привода выключателя

Цепи привода силового выключателяВ прошлой статье мы поговорили о реле РПО и РПВ, в этой давайте остановимся еще на одной смежной теме — защита электромагнитов привода выключателя от длительного протекания токов.

Для начала определимся зачем их защищать?

Электромагниты (соленоиды) привода выключателя рассчитаны на кратковременную работу. В соответствии с ГОСТ 52565-2006 (п.6.3.2.) время работы любого электромагнита под  напряжением 1,1*Uном. должно быть не менее 10-15 с (для различных условий разные времена). После этого он имеет полное право сгореть, что скорее всего и произойдет, если цепь управления не будет обесточена.

Зачем делать электромагниты привода на малое время работы?

Дело в том, что эти элементы должны обеспечивать быструю механическую операцию — освобождение защелки пружины. На эту операцию нужно определенное усилие, которое создается за счет «форсировки» электромагнита повышенным током. Другими словами сопротивление электромагнита специально делают меньше нормального для данного класса напряжения, чтобы создать повышенную мощность в первый момент. При этом начинает протекать повышенный ток, который электромагнит способен выдерживать только кратковременно. Если ток протекает длительное время, то электромагниту становится плохо.

Это решение абсолютно оправдано потому, что операция отключения и включения (для пружинных приводов) производится за короткое время. Например, для выключателя ВВУ-СЭЩ-П-10 собственное время включения составляет 0,05 с, а отключения — 0,03 с.

При нормальных условия ток в цепи управления рвется соответствующим блок-контактом. Например, для Рис.1 операция отключения происходит следующим образом:Схема управления пружинным приводом

Рис. 1 Схема управления пружинным приводом (с сайта www.electroshield.ru)

  • Контакт реле КСТ (реле команды отключить) подает напряжение на электромагнит отключения YAT. В цепи отключения начинает протекать ток, величина которого зависит от типа электромагнита. Обычно это 1, 2,5 или 5 А.
  • Электромагнит YAT под действием данного тока создает усилие, которое обеспечивает срыв защелки пружины отключения. Пружина разряжается и отключает выключатель
  • Блок-контакт Q1(13-14) меняет свое положение на противоположное (разомкнутое) и обесточивает цепь отключения, снимая напряжение с электромагнита. Контакт реле KСТ возвращается в исходное положение (разомкнутое) после возврата защиты присоединения (так как выключатель отключил КЗ)

Операция включения производится аналогично.

Однако, если по какой-то причине блок-контакт Q1 не разорвал цепь управления, ток через электромагнит продолжит протекать и приведет к его повреждению.

Причины могут быть разные, например, заклинивание механической части привода или проворот блок-контакта на валу привода. В любом случае это приведет к печальным результатам.

Почему нельзя отключить ток электромагнита контактом реле KСТ?

Потому, что обычно цепи управления выполняются на постоянном оперативном токе. Контакты обычного реле просто не способны разорвать постоянный ток даже величиной в 1 А, про 2,5 и 5 А нечего и говорить.

Кстати, в том числе и по этой причине устанавливают промежуточные реле между терминалом и приводом выключателя, а сам терминал снабжают специальным алгоритмом удержания команды управления до подтверждения ее исполнения (через фиксацию РПВ/РПО или контроль тока/напряжения на соответствующей цепи).

Алгоритм работы выходного реле управления выключателя (микропроцессорный терминал РЗА)

Рис.2  Алгоритм удержания реле Отключить до прихода РПО в блоке БМРЗ-152-КСЗ (с сайта www.mtrele.ru)

Как защитить электромагниты при нештатной операции управления?

Существует 2 способа.

1-ый способ.  Воздействие на автомат защиты цепей управления

Автомат SF1 рассчитан на отключение токов КЗ в сети постоянного тока и, конечно, он сможет разорвать номинальный ток цепи управления, если на него подать соответствующую команду отключения.

Для этого, во-первых, сам автомат должен иметь независимый расцепитель. Во-вторых, терминал РЗА должен уметь определять режим нештатной ситуации и отдавать эту команду на автомат (через независимый расцепитель)

Принцип защиты электромагнитов выключателя от длительного тока

Рис.3  Воздействие защиты электромагнитов выключателя на автомат питания цепей привода

Для контроля длительности протекания тока через электромагнит можно использовать 2 принципа:

— контроль тока при помощи токового реле, которое замыкает свой контакт всякий раз, когда ток появляется и размыкает, когда ток исчезает. Этот контакт можно завести на дискретный вход терминала управления выключателем, а в логической части установить таймер, например 3 с. По истечению этого времени, если сигнал на дискретном входе не исчез, терминал замыкает свое выходное реле и выдает команду на отключение цепей привода, через автомат SF1

Схема защиты электромагнитов выключателя от длительного протекания тока

Рис.4  Защита электромагнитов при помощи токовых реле в цепях привода

Количество токовых реле равно количеству электромагнитов выключателя. Для выключателей 110 кВ и выше, где обычно применяется эта защита, таких реле нужно установить три (для ЭВ, ЭО1, ЭО2).

Для унификации решений по различным типам приводов (например, при разработке типовых шкафов РЗА) можно использовать настраиваемое реле ABB CM-SRS.12, с регулировкой тока

Реле тока

Реле тока

Рис.5  Реле фиксации тока пр-ва АВВ

 

— второй способ состоит в измерении падения напряжения на специальном шунте/наборе шунтов

При этом во всех цепях управления устанавливаются низкоомные резисторы, которые создают небольшое падение напряжения, при протекании рабочего тока электромагнита. Это падение и фиксирует специальный дискретный вход терминала, запуская алгоритм защиты электромагнита, аналогичный описанному выше (с токовыми реле).

Впервые такой способ фиксации тока, если я не ошибаюсь, был применен в терминалах производства НПП ЭКРА. Правда, в настоящее время ЭКРА использует другой способ, аналогичный токовым реле (через специальный блок контроля тока)

В терминалах БМРЗ производства НТЦ «Механотроника», аналогичные дискретные входы, позволяют, в том числе, записывать напряжение на резисторе при коммутации выключателя, как любой другой аналоговый сигнал. Это напряжение может быть использовано как дополнительный фактор для анализа состояния электромагнитов (величина напряжения, длительность, фронт и т.д.) при составления плана ремонта оборудования

Контроль протекания тока с помощью дискретного входа терминала и шунта

Рис.6  Контроль тока через ЭО при помощи спец. дискретного входа в блоке БМРЗ-ТР пр-ва НТЦ «Механотроника»

2-ой способ. Установка мощных контакторов постоянного тока

Этот способ часто применялся в шкафах пр-ва АББ Автоматизация.

Его суть состоит в том, что команда на включение/отключение выключателя выдается в импульсном режиме, т.е. терминал РЗА не ждет подтверждения операции, а возвращает выходной контакт в разомкнутое состояние через определенное время (например, 1 с)

Чтобы при этом не произошло повреждение контактов этого реле, например при заклинивании привода, действие выполняется через контактор постоянного тока.

Для увеличения коммутационной способности несколько контактов этого контактора включаются последовательно. С одной стороны это упрощает логику работы АУВ (не требуется подтверждение операции), но с другой стороны снижает надежность схемы управления (несколько последовательных контактов).

В современных проектах такой способ применяется редко.

Использование контакторов в цепях привода силового выключателя 35-220 кВ

Рис.7  Использование контактора постоянного тока для защиты электромагнитов выключателя

Еще одним вариантом 2-го способа, исключающего большое кол-во контактов, мог бы стать применение мощного бесконтактного реле. При этом становится возможным рвать постоянный ток электромагнита без перенапряжения. Однако, твердотельные реле не получили пока широкого распространения в релейной защите, по крайней мере в ответственных цепях.

Почему именно — сказать сложно. Возможно из-за достаточно консервативного подхода в энергетике. Возможно из-за того, что мало кто хочет иметь а цепях управления силовым выключателем вместо разрыва (механический контакт) полупроводник (по-сути транзистор). Может мешают вопросы стоимости таких реле и тепловыделения…

Так или иначе, в настоящее время в основном применяется первый способ организации защиты электромагнитов привода от длительного протекания токов.

А применяете ли вы данную защиту в своих проектах?

One comment on “Защита электромагнитов привода выключателя

  1. Дмитрий Матвиенко

    Есть еще вариант. РП — контакты выходного реле защиты. Недостатки конденсаторной схемы известны, но она позволяет отказаться от блок-контактов выключателя, контроля тока в цепи отключения и использовать вых.реле с маломощными контактами.

    Reply

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.